Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells.
نویسندگان
چکیده
Reproduction is integrated by interaction of neural and hormonal signals converging on hypothalamic neurons for controlling gonadotropin-releasing hormone (GnRH). Kisspeptin, the peptide product of the kiss1 gene and the endogenous agonist for the GRP54 receptor, plays a key role in the regulation of GnRH secretion. In the present study, we investigated the interaction between kisspeptin, estrogen and BMPs in the regulation of GnRH production by using mouse hypothalamic GT1-7 cells. Treatment with kisspeptin increased GnRH mRNA expression and GnRH protein production in a concentration-dependent manner. The expression levels of kiss1 and GPR54 were not changed by kisspeptin stimulation. Kisspeptin induction of GnRH was suppressed by co-treatment with BMPs, with BMP-4 action being the most potent for suppressing the kisspeptin effect. The expression of kisspeptin receptor, GPR54, was suppressed by BMPs, and this effect was reversed in the presence of kisspeptin. It was also revealed that BMP-induced Smad1/5/8 phosphorylation and Id-1 expression were suppressed and inhibitory Smad6/7 was induced by kisspeptin. In addition, estrogen induced GPR54 expression, while kisspeptin increased the expression levels of ERα and ERβ, suggesting that the actions of estrogen and kisspeptin are mutually enhanced in GT1-7 cells. Moreover, kisspeptin stimulated MAPKs and AKT signaling, and ERK signaling was functionally involved in the kisspeptin-induced GnRH expression. BMP-4 was found to suppress kisspeptin-induced GnRH expression by reducing ERK signaling activity. Collectively, the results indicate that the axis of kisspeptin-induced GnRH production is bi-directionally controlled, being augmented by an interaction between ERα/β and GPR54 signaling and suppressed by BMP-4 action in GT1-7 neuron cells.
منابع مشابه
Regulation of GNRH production by estrogen and bone morphogenetic proteins in GT1-7 hypothalamic cells.
Recent studies have shown that bone morphogenetic proteins (BMPs) are important regulators in the pituitary-gonadal endocrine axis. We here investigated the effects of BMPs on GNRH production controlled by estrogen using murine GT1-7 hypothalamic neuron cells. GT1-7 cells expressed estrogen receptor alpha (ERalpha; ESR1 as listed in MGI Database), ERbeta (ESR2 as listed in MGI Database), BMP re...
متن کاملKisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells overexpressing G protein-coupled receptor 54.
Kisspeptin signaling through its receptor is crucial for many reproductive functions. However, the molecular mechanisms and biomedical significance of the regulation of GnRH neurons by kisspeptin have not been adequately elucidated. In the present study, we found that kisspeptin increases GnRH receptor (GnRHR) expression in a GnRH-producing cell line (GT1-7). Because cellular activity of G prot...
متن کاملExpression of a functional g protein-coupled receptor 54-kisspeptin autoregulatory system in hypothalamic gonadotropin-releasing hormone neurons.
The G protein-coupled receptor 54 (GPR54) and its endogenous ligand, kisspeptin, are essential for activation and regulation of the hypothalamic-pituitary-gonadal axis. Analysis of RNA extracts from individually identified hypothalamic GnRH neurons with primers for GnRH, kisspeptin-1, and GPR54 revealed expression of all three gene products. Also, constitutive and GnRH agonist-induced biolumine...
متن کاملInhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.
Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transducti...
متن کاملEstrogen Directly Represses Gonadotropin-Releasing Hormone (GnRH) Gene Expression in Estrogen Receptor-α (ERα)- and ERβ-Expressing GT1-7 GnRH Neurons1.
Estrogen has wide-ranging and complex effects on the reproductive axis, which are often difficult to interpret from in vivo studies. Estrogen negatively regulates tonic GnRH synthesis and also plays a pivotal role in the positive regulation of GnRH necessary for the preovulatory surge. To dissect the mechanisms by which these divergent effects occur, we attempted to observe the direct action of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular endocrinology
دوره 381 1-2 شماره
صفحات -
تاریخ انتشار 2013